සියලුම හිමිකම් ඇව්රිණි] All Rights Reserved (C 71 (RECALL ALL MEMORY) අධ¤යන පොදු සහතික පතු (උසස් පෙළ) විභාගය , 2021 අගෝස්තු பொதுத் தராதரப் பத்திர(உயர் தர)ப் பரீட்சை, 2021 ஓகஸ்ற் **ക്കാരി**ല് General Certificate of Education (Adv. Level) Examination, August 2021 2021 භෞතික විදාගව **THEORY** பௌதிகவியல் Advanced Level Physics Physics Amith Pussella PHT6210 2021Th 2021-05-07

Multiple Choice Questions

- Two cells, each having e.m.f. E and internal resistance r, connected as shown in figure are equivalent to a single cell with
 - (1) e.m.f. E and internal resistance r.
 - (2) e.m.f. 2E and internal resistance 2r.
 - (3) e.m.f. 2E and internal resistance r.
 - (4) e.m.f. E and internal resistance
 - (5) e.m.f. E and internal resistance 2r.

(2)
$$\frac{q}{4\pi\epsilon_0 a^2}$$
 in the EO direction.

(3)
$$\frac{q}{\pi \epsilon_0 a^2}$$
 in the *OE* direction.

(4)
$$\frac{q}{\pi \epsilon_0 a^2}$$
 in the EO direction.

2.

vertex is a. The electric field intensity at the centre of the pentagon is

- (B) adding one more p-type semiconductor piece with the same hole concentration.
- (C) bringing a metal sphere carrying a charge of -q from outside into the enclosed volume.

(1) only A is true.

- (2) only C is true.
- (3) only A and B are true.
- (4) only B and C are true.
- (5) All A, B and C are true.

(1) 8.75%

(2) 12.5%

(3) 66.6%

(4) 78.3%

(5) 87.5%

n

 $R = R \qquad R =$

The same current I is sent through resistor networks A, B and C as shown in above figure. If all the resistors in the networks are of equal magnitude, the maximum power is consumed by

(1) the network A.

- (2) the network B.
- (3) the network C.

- (4) the networks A and B equally.
- (5) the networks B and C equally.
- 7. A piece of wire is bent into the form shown in figure and a current of I is passed in the direction shown. The magnitude of the magnetic flux density at the point O is
 - (1) $\frac{\mu_0 I}{4r}$
- (2) $\frac{\mu_0 I}{8r}$
- $(3) \quad \frac{3\mu_0 I}{2r}$

- $(4) \quad \frac{\mu_0 I}{2r}$
- $(5) \quad \frac{3\mu_0 I}{8r}$

- 8. An electron and a proton travel with equal speeds around two circular paths shown in the diagram (drawn not to scale) under the influence of a uniform magnetic field. If the direction of magnetic field is perpendicular and into the plane of the paper,
 - (1) the electron travels clockwise around the small circular path and the proton travels counter-clockwise around the large circular path.

 - (3) the electron travels clockwise around the large circular path and the proton travels counter-clockwise around the small circular path.
 - (4) the electron travels counter-clockwise around the large circular path and the proton travels clockwise around the small circular path.
 - (5) the electron travels counter-clockwise around the small circular path and the proton travels counter-clockwise around the large circular path.
- 9. Breakdown voltage of the zener diode in the circuit shown is 5 V. R_L is a suitable resistor. The capacitor C is first charged to 10 V by closing the switch S_1 and opening the switch S_2 . Subsequently, S_1 is opened and S_2 is closed. Consider the following statements made about the functioning of the circuit after S_2 is closed.

- (A) Voltage across R_L will be 5 V so long as the capacitor voltage is adequately above 5 V.
- (B) Time period through which the voltage across R_L remains constant does not depend on the value of the capacitance.
- (C) Potential drop across R gradually decreases with time.

Of the above statements,

(1) only A is true.

- (2) only C is true.
- (3) only A and B are true.
- (4) only A and C are true.
- (5) All A, B and C are true.
- 10. A cylindrical copper block of radius r and length l = 2r radiates energy as a black body at temperature T. If this copper block is cut and separated into N identical disks having the same radius r, the rate of the emission of radiant energy at the above temperature will increase by a factor of
 - (1) $\frac{(N+3)}{3}$
- (2) $\frac{(N+2)}{3}$
- (3) $\frac{(N+1)}{3}$
- (4) $\frac{N}{3}$
- (5) N